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Abstract. The critical behavior of an interacting two species catalytic surface reaction model is studied
by means of Monte Carlo simulations and a mean-field approach. The model has two parameters, namely
the relative adsorption rate of species pA and a short-range repulsive interaction r between the same type
of adsorbed species. The system exhibits an stationary reactive phase and two symmetrically equivalent
absorbing phases. These latter phases are unique and correspond to surfaces saturated by a single type of
reacting species. For r > 0 ∧ r �= 1, the system exhibits a second-order phase transition that belongs to
the directed percolation (DP) universality class. However, in the absence of repulsive interaction (r = 0),
a bicritical point is found at pA = 1/2 whose critical behavior is compatible with dynamical mean-field
exponents. Our findings indicate that the bicritical point belongs to the Voter Model universality class,
whose upper critical dimension is dc = 2. In addition, we propose a method to study the crossover from
MF to DP behavior based on the estimation of the crossover time Tc. We find that Tc diverges according
to a power-law Tc ∝ r−µ as r → 0 where µ � 1.17 ± 0.03 is the crossover exponent. For strong repulsion,
a new transient effect appears associated with the onset of almost inactive “chessboad” patterns.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 82.45.Jn Surface structure, reactivity and catalysis

1 Introduction

Very recently, the study of non-equilibrium surface reac-
tion systems has attracted growing attention. This interest
is motivated by both their technological applications and
their academic and scientific relevance. Examples of tech-
nical applications include the manufacture of chemicals
via heterogeneously catalyzed reactions, the treatment of
automobile exhausts, the reduction of environmental pol-
lution, coating, corrosion and passivation of surfaces, syn-
thesis and refinement of hydrocarbons, etc. On the other
hand, the scientific interest arises out of the emergency
of rich and complex physical and physical-chemistry phe-
nomena including, chaos, bistability, critical phenomena
and irreversible phase transitions, propagation and inter-
ference of chemical waves of adsorbed reactants, chemicals
oscillations, etc. [1–5].
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From the scientific point of view, an approach to treat
these complex reaction systems is to study simple lattice
gas models by means of numerical Monte Carlo simula-
tions complemented by mean-field treatments [4,5]. These
methods are very useful because one lacks of a well estab-
lished theoretical framework since the development of the
statistical mechanics of far-from equilibrium chemical re-
actions is in its infancy. In fact, it is known that lattice
gas reaction models for elementary reactions such as the
catalytic oxidation of carbon monoxide [6], the catalyzed
reaction CO + NO [7], the catalytic oxidation of hydro-
gen [8,9], etc. (for reviews see [5,10]) exhibit both first-
and second-order irreversible phase transitions (IPT’s). In
contrast to their reversible counterpart, where each phase
can reversible be reached by tuning a suitable parame-
ter, IPT’s take place between an active state (or reactive
regime with sustained production of desorbing molecules)
and an inactive (or poisoned) state where the reaction
stops due to the irreversible saturation of the catalytic
surface by one or more reactants. Notice that the physical
system can not escape from a poisoned state where it is
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trapped forever, so the poisoned state is also known as an
absorbing state of the system.

Within this context, the aim of the present work is to
study the critical behavior of the Zhuo, Park and Redner
(ZPR) model [11] in d = 2 dimensions. The ZPR model,
which has early been studied in d = 1 [11] corresponds to
a monomer-monomer reaction system with short-range re-
pulsive interactions. Our study, which is based on both nu-
merical Monte Carlo Simulations and a Mean Field (MF)
approach, reveals a rich critical behavior, qualitatively dif-
ferent to that observed in the d = 1 case, as discussed in
detail below. The manuscript is organized as follow: the
ZPR model is defined in Section 2; the Monte Carlo simu-
lation method and the Mean Field approach are described
in Sections 3.1 and 3.2, respectively. Results are presented
and discussed in Section 4 and the conclusions are stated
in Section 5.

2 The ZPR model

The ZPR model considers the surface catalyzed reaction
of two kind of monomers A and B, respectively. The ar-
rival probability of A (B)-species to the surface is pA (pB),
respectively, such as pA + pB = 1. The repulsive inter-
action between the same kind of monomers on nearest
neighbor (NN) sites is accounted by a “ repulsion “ pa-
rameter r with (0 ≤ r < 1). Therefore, the adsorption
on an empty site surrounded by an empty neighborhood
proceeds with probability pA or pB, depending on the ad-
sorbing species. However, the adsorption probability on a
certain empty site that has at least a single NN site occu-
pied by the same species is weakened by a factor (1 − r).
Summing up, the ZPR model has two independent param-
eters: pA and r. It is assumed that the reaction proceeds
according to the Langmuir-Hinshelwood mechanism, that
is with both reactants adsorbed on the surface, so:

A(g) + S →kA A(a) (1)

A(g) + S′ →k′
A A(a) (2)

B(g) + S →kB B(a) (3)

B(g) + S′ →k′
B B(a) (4)

A(a) + B(a) →kR (AB) ↑ +2S (5)

where A(g) and B(g) are particles in the gas phase, A(a)
and B(a) are adsorbed particles, and S (S

′
)′ is an empty

site of the lattice such as none (at least one) of their NN
sites are (is) occupied by the same species. The molecule
(AB) ↑ is the reaction product that leaves the surface
causing the re-generation of empty sites. The adsorption
rate constants are kA = pA, k

′
A = (1 − r) pA, kB =

1− pA, and k
′
B = (1 − r) (1 − pA) where the relationship

pA+pB = 1 has been used. Reaction between NN adsorbed
species of different type is instantaneous (kR → ∞ in
Eq. (5)), i.e. the reaction is controlled by adsorption,

kR � kA, kB, k′
A, k′

B. (6)

In d = 1, Zhuo et al. [11] have shown that for 0 ≤
r < rc

∼= 0.2565 the ZPR model exhibits a line of first-
order IPT’s which separates absorbing states saturated
by different species, while above the bicritical point rc

( r > rc ) this line bifurcates and a finite-width reaction
window is observed.

3 Numerical approaches

3.1 The Monte Carlo simulation method.

The ZPR model is simulated in d = 2 dimensions on the
square lattice using samples of side L and assuming peri-
odic boundary conditions. The lattice side L is measured
in lattice units (LU). Double occupancy of a lattice sites
is forbidden. The time unit is given by the Monte Carlo
time step (mcs) that involves L × L adsorption trials, so
that each site of the lattice is visited once, on the average.

Preliminary runs of the standard Monte Carlo algo-
rithm indicate that in d = 2, the ZPR model exhibits
second-order IPT’s. So, in order to obtain accurate val-
ues of the critical points and to determine the universally
class, epidemic simulations (ES) [12,13] were performed.
The basic concept behind an ES is to initialize the sim-
ulation using a configuration very close to the poisoned
(absorbing) state. For the case of the state poisoned by
A-species, this kind of configuration is simply obtained
by covering the whole lattice with A-monomers, except
for a small patch of empty sites located at the center of
the sample for computational convenience. In this paper,
most of the results are obtained using patches consisting
of a single empty site. Runs initialized using patches of
different size show the same asymptotic properties. After
initializing the system, the ES actually starts and the time
evolution of the system is monitored through the following
quantities: (i) the average number of empty sites (N(t) );
(ii) the survival probability of the epidemics (P (t) ), that
is the probability that reactions still occur at time t; and
(iii) the average square distance of the empty sites relative
to the center of the starting epidemics (R2(t) ) [12,13]. Of
course, each single ES finishes when the system is trapped
in the poisoned state (N(t) = 0 ). Results are averaged
over 105 different epidemics. It should be noticed that
N(t) is averaged over the total number epidemics while
R2(t) is averaged only over surviving epidemics.

Close to a second-order phase transition P (t), N(t)
and R2(t) exhibit power-law behavior and the following
Ansätze are expected to hold [12,13]:

P (t) ∝ t−δ, (7)
N(t) ∝ tη, (8)

and
R2(t) ∝ tz, (9)

where δ, η and z are dynamic critical exponents. All these
exponents are related through an hyper-scaling relation-
ship given by [12,13]

dz = 4δ + 2η. (10)
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As expected, the scaling laws given by equations (7, 8, 9)
are only valid at criticality. So, using log-log plots of the
numerical data it is possible to evaluate not only the dy-
namical critical exponents but also to determine the crit-
ical point, since upward and downward deviations from
linearity are observed within the reactive and poisoned
regimes, respectively. Lattices are taken large enough to
prevent the epidemics to reach the boundaries of the sam-
ples. Therefore, exponents determined using ES are free
of undesired finite-size effects.

3.2 A mean field approach

Mean Field (MF) treatments of reaction models usually
gives a rough insight on the behavior of the system. In fact,
since all quantities under consideration are averaged over
the whole sample, the MF approach neglects fluctuations
and long-range correlations that are essential for a correct
description of continuous transitions.

In this work, a set of single-site MF equations is ob-
tained for the time evolution of the densities ρA(t) and
ρB(t). The density of a given species increases (decreases)
due to adsorption (reaction following desorption) events.
So, the generic MF equations can be written as:

dρA

dt
=

5∑

i=1

ma
i fA

ai −
10∑

j=1

md
jf

A
dj, (11)

where fA
ai and fA

dj are the occurrence probability of adsorp-
tion (a), and desorption (d), respectively. ma

i and md
j are

multiplicity factors corresponding to the neighbor config-
urations. For instance, let us focus on the adsorption term
in equation (11). There are five different neighbor config-
urations (i = 1, · · · , 5) namely, an empty neighborhood
(ma

1 = 1), a neighborhood having one A-particle (ma
2 =

4), a neighborhood having two A-particles (ma
3 = 6), a

neighborhood having three A-particles (ma
4 = 4), and a

neighborhood having four A-particles (ma
5 = 1). For the

desorption term, more configurations are possible since
the neighborhood may have also B-particles. For the par-
ticular case of A-species, equation (11) can be written as:

dρA

dt
= pAρ5

V + (pArρV − pBρV )ρ4
A + 4(pArρV − pBρV

− pBrρB)ρV ρ3
A + 6ρV ρ2

A(pArρ2
V − pBρ2

V

− 2pBrρV ρB − pBrρ2
B) + 4ρV ρA(pArρ3

V − pBρ3
V

− 3pBrρ2
V ρB − 3pBrρV ρ2

B − pBrρ3
B). (12)

There is also an analogous equation for B particles, namely

dρB

dt
=

5∑

i=1

ma
i fB

ai −
10∑

i=1

md
i f

B
di (13)

The set of equations (11) and (13) has to be solved
with the constraint

ρA + ρB + ρV = 1, (14)

where ρV is the density of empty sites.
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Fig. 1. Phase diagram of the ZPR model in d = 2 dimensions.
The symbols ◦ and • correspond to MF results and epidemic
Monte Carlo dynamic simulations, respectively.

4 Results and discussion

Solving the MF equations numerically, it is possible to
determine the critical points where the system under-
goes IPT’s. The obtained phase diagram, shown in Fig-
ure 1, exhibits the expected particle exchange symmetry.
Three phases can be easily distinguished, namely a reac-
tive regime and two poisoned states with A and B species,
respectively.

After obtaining a first insight on the behavior of the
system with the MF analysis, we have proceeded to per-
form extensive Monte Carlo simulations. Figure 2 shows
data corresponding to ES for r = 0 and pA = 1/2. As
shown in Figure 2a, power laws are obtained for all mea-
sured quantities namely, N(t), P (t), and R(t), as expected
from equations (7, 8) and (9), respectively. Accurate val-
ues of the exponents can be obtained measuring the time
dependence of effective exponents given by [13]:

−δeff (t) =
log10 (P (t)/P (t/τ))

log10(τ)
, (15)

where τ is the time interval used to compute the effective
exponents. All the simulations have been performed using
τ = 5. Notice that similar relationships can be written for
both ηeff (t) and zeff (t) [13]. The temporal evolution of the
effective exponents are shown in Figure 2b. By performing
a mean-square fit of the results shown in Figure 2a and
t → ∞ extrapolations of the data shown in Figure 2b,
our estimations of the exponents are η = −0.03(3), δ =
0.98(2) and z = 1.04(4). So, it is concluded that for this
particular point of the phase diagram at pA = 1/2 and in
the absence of repulsion (r = 0), the exponents correspond
to the well known MF behavior with η = 0, δ = 1 and
z = 1 [14], respectively.

On the other hand, considering repulsion (r > 0), the
dynamical critical behavior is quite different, as shown in
Figure 3 for r = 0.2. In fact, in this case the obtained ex-
ponents are η = 0.214(5), δ = 0.48(2) and z = 1.125(5).
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Fig. 2. Results of ES obtained for r = 0 and pA = 1/2. The
results are averaged over 106 different runs. (a) Log-log plots
of: R2(t), N(t), and P (t) vs. time. (b) Plots of the effective
exponents ηeff , δeff , and zeff vs. 1/t. The time is measured in
mcs. The extrapolations to t → ∞ give the estimations of the
critical exponents quoted in the text.

Notice that these exponents satisfy the hyperscaling rela-
tionship given by equation (10) with d = (4δ + 2η)/z =
2.09 ± 0.03.

Furthermore, within the poisoned state it is expected
that N(t) would decay exponentially, so

N (t) ∝ exp(−λ(pA) t ), (16)

where the factor λ(pA) behaves as

λ(pA) ∝ (pA − pAc)ν‖ , (17)

where ν‖ is the critical exponent of the temporal corre-
lation length. Therefore, after an accurate estimation of
the critical point, it is possible to evaluate λ(pA) by mea-
suring the time decay of N(t) for different values of pA.
Subsequently, log-log plots of λ vs. (pA − pAc) allow the
evaluation of ν‖ = 1.23(5) (see Fig. 4).
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Fig. 3. Results of ES for r = 0.2. The results are averaged
over 105 different runs. (a) Log-log plots of N(t), P (t) and
R2(t) vs. time. A power-law behavior for all these quantities is
obtained for pA = 0.5447, while sub-critical and super-critical
deviations are observed otherwise (not shown here for the sake
of clarity). (b) Plots of the effective exponents ηeff , δeff and
zeff vs. 1/t. The time is measured in mcs. The extrapolations
to t → ∞ give the estimations of the exponents quoted in the
text.

It should be noticed that all the evaluated exponents
are in excellent agreement with those corresponding to
the directed percolation (DP) universality class in (2 + 1)
dimensions, given by δ = 0.4505(1), η = 0.2295(1), z =
1.1325(1) and ν‖ = 1.295(6) [14,15].

Epidemics studies, similar to those presented here for
r = 0.2, have also been performed for several values of
the repulsion parameter. The obtained critical exponents
for r > 0 are always in excellent agreement with those
of the DP, i.e. the critical curve belongs to the DP uni-
versality class. Figure 1 shows the phase diagram of the
ZPR model in 2-dimensions. It is worth mentioning that
the phase diagram obtained using the single site MF ap-
proach is in good agreement with that obtained by means
of Monte Carlo simulations. This agreement is remarkable
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Fig. 4. Log-log plot of λ vs. pA − pAc, as obtained for pAc =
0.5447. The straight line has slope ν‖ = 1.23 and corresponds
to the best fit of data.

considering the rough approximations introduced in the
derivation of the MF equations.

Summing up, the phase diagram of the ZPR model in
d=2 dimensions exhibits a mean-field like critical point at
(pA = 1/2, r = 0), while for r > 0 the (symmetric) critical
lines correspond to second-order IPT’s that belong to the
DP universality class. On view of this finding, we have
analyzed the crossover from MF to DP behavior as well.
In fact, Figure 5 shows log-log plots of N(t) versus t ob-
tained at criticality for different values of r. It is found
that for r → 0 (r = 0.005 in Fig. 5) the dynamical
behavior is controlled by the bicritical point (MF like be-
havior) for short times, subsequently changing to DP be-
havior. The crossover time (Tc) as defined in Figure 5 is
Tc

∼= 650 mcs. As expected, Tc decreases when increas-
ing r, i.e. away from the MF critical point. This behavior
can be observed in the inset of Figure 5 which shows a log-
log plot of Tc versus rc. For rc ≤ 0.1 a power-law decay of
the form

Tc ∝ r−µ
c , (18)

is found and the best fit of the data gives µ = 1.17(3). The
observed decay-law suggest a scaling plot of N(t) versus
t/Tc as shown in Figure 6. The obtained data collapsing
is excellent and strongly supports an unified description
of the dynamical crossover behavior for different values
of the repulsion parameter. On the other hand, it is also
expected that near the bicritical point, the border of the
active phase behaves as (pAc − 0.5) ∝ rφ

c , where φ is the
crossover exponent [16]. The inset of Figure 6 shows a
log-log plot of (pAc − 0.5) versus rc along the reactive
phase edge near the bicritical point. We obtain a crossover
exponent φ ∼ 1.13(3), which indicates that φ = µ within
the error bars. Consequently, the crossover time diverges
at the bicritical point as

Tc ∼ (pAc − 0.5)−1. (19)

The crossover behavior of the 1d ZPR model has never
been addressed in the literature. However, the bicritical
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line shows the best fit of the data that yields an slope φ =
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points of the three species monomer-monomer model [17]
are in the same universality class as the bicritical point of
the 1d ZPR model. Although the authors have not investi-
gated the behavior of the crossover time, they studied the
crossover behavior along the border of the active phase
and found φ ∼ 2.1(0.1). We expect that in 1d the be-
havior of the crossover time is also characterized by the
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exponent φ which implies that equation (19) should also
be valid in 1d, where instead of 0.5 the actual value of the
1d bicritical point should be used.

For high repulsion values, ES become time consuming
since another transient behavior similar to the one ob-
served near the bicritical point appears. Figure 7 shows a
log-log plot of N(t) versus t where a flat transient behav-
ior is evident before the system reaches the asymptotic
regime. In fact, for r � 0.8 the time Tr needed for the
system to reach the asymptotic regime increases. The in-
set of Figure 7 shows a log-log plot of Tr versus (1 − rc)
where the effect can be observed. Although a power-law
behavior could be suggested, more point should be simu-
lated in a region where ES are extremely time consuming.
This behavior however can easily be understood after the
inspection of typical snapshot configurations obtained for
pA = 1/2 and different values of r. In fact, Figure 8a shows
a snapshot obtained for r = 0.2. In this case, the weak re-
pulsion among adsorbed particles allows the formation of
small compact cluster of A and B-species. Increasing the
repulsion (r = 0.8) in Figure 8b, the formation of com-
pact clusters is no longer observed and, instead the onset
of chess-board-like structures of adsorbed species becomes
apparent. For the higher repulsion ( r = 0.9), the config-
uration of the system is clearly dominated by the chess-
board-like structures (see Fig. 8c). Finally, at the border of
the phase diagram (r � 1 in Fig. 8d) the surface is covered
by two shifted chess-board structures with a well defined
interface between them. Of course, this a finite-size and fi-
nite observation time effect. In fact, for larger lattices one
should expect the occurrence of many incompatible chess-
board structures. However, as time evolves, a coarsening

process is expected to occur such as for the t → ∞ limit
a single domain would prevail. It should be noticed that
in the bulk of the chess-board structures the occurrence
of A + B → AB reactions has a very small probability
which completely vanishes for r = 1. So, the bulk is almost
inactive and reaction events can only take place along the
interfaces between shifted chess-board structures.

It is now possible to understand why the transient be-
havior observed in Figure 7 is similar to the one shown in
Figure 5. Due to the strong repulsion, the almost frozen
chessboard patterns develop. Once again, the dynamics
of the system is influenced by two equivalent almost ab-
sorbing configurations, namely the two shifted chess-board
structures that cause the flat transient behavior in the
time evolution of N(t). It should be noticed that this ef-
fect will occur for strong repulsions as far as pA 	= 0, 1.

Figure 9 shows plots of the coverage of both species
(ΘA and ΘB ), the density of empty sites (ΘV ) and the
rate of the AB-reaction ( RAB ) versus r , respectively. All
data correspond to pA = pB = 1/2. Notice the RAB is
given by the number of reaction events per lattice site and
unit of time. RAB reaches a broad maximum close to 0.1 ≤
r ≤ 0.2 and subsequently decreases smoothly up to r �
0.85 where a sudden drop is observed such as RAB → 0 for
r → 1. This behavior is in excellent agreement with the set
of snapshot configurations already discussed (Fig. 8). In
fact, the reduction of RAB is clearly linked to the onset of
almost inactive chess-board structures. Also, notice that
perfect chess-board structures are characterized by ΘA =
ΘB = 1/4 with ΘV = 1/2 and RAB ≈ 0, as observed in
Figure 9 for r → 1.

Finally, it is worth discussing the nature of the bicriti-
cal point and comparing our results for the ZPR model in
d = 2 with those reported by Zhuo et al. [11] for d = 1.
For some years, there was an interesting debate concern-
ing the origin of the branching annihilation random walks
with even number of offsprings (BAWE) universality class,
i.e. why this class was different from the DP class [17–28].
The archetype model which belongs to the BAWE univer-
sality class is the BARW model with an even number of
offsprings [21,22]. In this model, a local conservation of
the number of particles modulo 2 is present. Then, it was
argued that this conservation law, which is not present in
models that belong to the DP class, was the origin of this
new universality class. It should be noted that it is not
always straightforward to identify the conserved quantity.
In the case of the ZPR model in 1d, it is not the num-
ber of particles but the number of domain walls AV B the
conserved modulo 2 quantity at the bicritical point [17].
In addition, there are other models where the number of
complex extended objects (“generalized walkers”) is the
conserved quantity modulo 2 [27,28]. Notice that at the bi-
critical point the symmetry between the absorbing states
emerges. Then, one concludes that the origin of the PC
class is either the presence of this symmetry or the conser-
vation of “particles” modulo 2, but both properties should
be present. The dynamical renormalization group theory
for the BARW with an even number of offsprings indicates
that in 1d fluctuation effects lead to the emergence of a
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(a)

(b)

(c)

(d)

Fig. 8. Typical snapshot configuration obtained for pA = 1/2 and different values of r: a) r = 0.2, b) r = 0.8, c) r = 0.9 and d)
r = 1. The lattice size is L = 128 and the snapshots are taken 1000 mcs after the initialization of the run with empty lattices.
Black (gray) squares correspond to A− (B−) species while empty sites are left in white.

non-trivial inactive phase for values of the branching rate
(0 ≤ σ < σc) and a dynamic phase transition at σc. How-
ever, in 2d the theory predicts that the critical branching
rate takes the value predicted by the mean-field theory
σc = 0 [29,30]. In the 1d ZPR model, the branching pa-
rameter is proportional to the repulsion r and the critical
behavior of the model is in complete agreement with this
theory since for pA = 0.5 and r < rc = 0.2565 the sys-
tem displays an inactive phase, while for pA = 0.5 and
r = rc = 0.2565 a dynamic phase transition is found. In
the 2d ZPR model at (pA = 0.5, r = 0), the symmetry be-
tween absorbing states emerges but one can not identify
pointlike (0 dimensional) walkers as a conserved quan-
tity. Instead, the dynamics is described by a nearly one-
dimensional interface whose time evolution forms a tube-

like structure. The present model at the bicritical point
shares some properties with the so called Voter Model
(VM) [31,32], namely the presence of the Z2 symmetry
(A → B) and the same dynamical critical exponents [33].
Although there are still other properties that should be
compared like the conservation of a A(B)-patch size (anal-
ogous to the magnetization in the VM), the absence of sur-
face tension, and the duality [34], this transition is driven
by interfacial noise only and consequently the bicritical
point belongs to the VM universality class.

It should be noticed that for r = 0 (absence of repul-
sion) the ZPR model is mapped on the standard monomer-
monomer (MM) reaction model [5,6,10,35]. So, our results
also clarifies the nature of the IPT of the standard MM
model that was believed to be of first-order [35].
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Fig. 9. Plot of θA = θB, θV and the rate of production of
AB-species RAB vs. r. Data obtained for pA = pB = 1/2 and
using lattices of side L = 256.

5 Conclusions

We have studied the critical behavior of the ZPR model in
2-d by means of Monte Carlo simulations and a single site
mean-field approach. Surprisingly, the simple MF anal-
ysis reproduces extremely well the phase diagram found
using Monte Carlo simulations. For r > 0 the system dis-
plays second-order IPT’s that belong to the DP universal-
ity class. At (pA = 0.5, r = 0), the symmetry between the
absorbing states emerges and the critical behavior is de-
scribed by dynamical mean-field exponents. This finding
suggest that this point belongs to the Voter Model uni-
versality class since dc = 2 is the upper critical dimension
of this class. The crossover from MF to DP behavior has
also been studied. ES in the neighborhood of the bicriti-
cal point are influenced by the presence of two equivalent
absorbing configurations. For r ≤ 0.1, the crossover time
behaves as a power-law Tc ∼ r−µ with µ ≈ 1.17(3). The
same exponent (within error bars) was found for the order
of the active phase near the bicritical point which implies
that Tc ∼ (pAc − pbic)−1, where pbic is the value of the
bicritical point. We expect that this behavior is also valid
in 1d.

For strong repulsions (r � 0.8), a new transient effect
appears due to the presence of metastable long-lived chess-
board-like structures. These structures, which are nearly
absorbing, prevent the growing of the actual absorbing
phase leading to the dramatic increase of the time needed
for the system to reach the asymptotic behavior.

This work was supported by CONICET, UNLP and ANPCyT
(Argentina).
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29. J.L. Cardy, U.C. Täuber, Phys. Rev. Lett. 77, 4780 (1996)
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